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Scaling behavior of improvement and renormalization constants * 
Tanmoy Bhattacharya", Rajan Gupta", Weonjong Leea, Stephen Sharpeb 

"MS B-285, Los Alamos National Lab, Los Alamos, New Mexico 87545, USA 

bPhysics Department, University of Washington, Seattle, Washington 98195, USA 

This talk summarizes results for all the scale independent renormalization constants for bilinear currents ( Z A ,  
ZV, and Zs/Zp), the improvement constants ( C A ,  CV,  and CT), the quark mass dependence of 20, and the 
coefficients of the equation of motion operators for O(a) improved lattice QCD. Using data at p = 6.0, 6.2 and 
6.4 we study the scaling behavior of these quantities and quantify residual discretization errors. 

The use of axial and vector Ward identities 
has proven to  be a very efficient and reliable way 
of extracting the improvement and renormaliza- 
tion constants for the O(a) improved fermion 
action. The methodology, references to previous 
calculations, and the notation we use are given in 
[l]. The features of the calculation summarized 
here are: new data a t  ,f3 = 6.4; a reanalyses of 
C A  including O(m2a2)  corrections and extraction 
of CA from non-zero momentum correlators; im- 
proved chiral extrapolations of A':, CT, ip - 6 ~ ;  
scaling behavior of all the constants including 
comparison against results by ALPHA collabora- 
tion and 1-loop perturbation theory (see I13 and 
these estimates are also summarized in Table 1). 
Detailed results will be presented in [2]. 

The new data at ,f3 = 6.4 is obtained on 60 lat- 
tices of size 243 x 64. The region of c h i d  rotation 
is selected to  be between tirne slices 9 - 57 with 
the source at t = 1. This single insertion region 
allows us to  gather data using both forward and 
backward propagation of states, and represents 
an improvement over calculations reported in 
[l]. Overall, we find that there is a tremendous 
improvement in the quality of the signal with p. 
The data at ,8 = 6.4 has allowed us to  resolve 
certain trends we saw earlier. 

The first such feature is the need for including 
an O(rn2a2) term in the extrapolation of C A  to 
the chiral limit. Data at ,5' = 6.4 is shown in 
Fig. 1. In Table 1 we giw results of both the 

*Presented by Rajan Gupta. Calculations supported by 
the DOE Grand Challenges award at the ACL at Los 
Alamos and at NERSC. 
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Figure 1. Comparison of linear and quadratic ex- 
trapolation of C A  to the chiral limit 

linear and quadratic fit (marked by an asterisk), 
and take the quadratic fit as the preferred final 
value. Our results show a weak dependence of C A  
on p in the range 6.0 - 6.4, unlike that found by 
the ALPHA collaboration, but consistent with 
the recent results by Collins etal. [3]. 

The second point concerns the chiral extrap- 
olation for z:, cT, i p  - & A .  Our estimates 
presented in [l] were based on constant fits as 
these quantities are not expected to have O(rna) 
corrections if the theory is fully improved to  O(a). 
We now choose to  advocate using results of linear 
extrapolation as our data show a dependence 
on m which can arise due to terms of the form 
O(ahQcr, ma)  as we have used mass-dependent 



2 

1.769 

f0.770(1) 

f0.807(2)(8) 

f0.802(2)(8) 
f0.842(5)(1) 

-0.037(4)(8) 

-0.038(4) 

-0.107(17)(4) 

f0.063(7)(29) 

+0.076(10) 

f1.43(1)(4) 
f1.52(1) 

-0.26(3)(4) 

-0.24(3)(4) 

-0.06(4)(3) 

-0.07(4)(5) 

-0.08(30) 

+1.17(4)(8) 

+1.28(3)(4) 
+1.10(5)(13) 

+1.16 (6) (1 1) 

Table 1 
The first error in LANL estimates is statistical, and the second, where present, corresponds to  the 
difference between using 2-point and 3-point discretization of the derivative in extraction of C A .  Asterisk 
marks our preferred values which include O(ma) corrections in the chiral extrapolations. 

1.769 1.521 1.614 

+0.7809(6) +0.810 +0.7874(4) 

+0.7906(94) +OX29 +0.818(2)(5) 

+0.815(2)(5) 
N.A. +0.956 +0.884(3)(1) 

-0.083(5) -0.013 -0.032(3)(6) 
-0.033(3) 

-0.32(7) -0.028 -0.09(2)(1) 
N.A. +0.020 +0.051(7)(17: 

+0.059(8) 

N.A. +1.106 +1.30(1)(1) 

+1.54(2) +1.274 +1.42(1) 

N.A. -0.002 -0.11(3)(4) 

N.A. -0.002 -0.11(3)(4) 

N.A. -0.066 -0.09(2)(1) 

N.A. +0.002 -0.09(3)(3) 

+0.03(9) 

N.A. +1 .lo4 +1.19(3) (5) 
N.A.  +1.271 +1.32(3)(4) 

N.A. +1.105 +1.11(4) (7) 

I N .  A. 1+1.17211+1.19(4)(6) 

. ,  
/3 = 6.0 

LANL IALPHA IP. Th. IILANL 

value of CA in intermediate stages of these calcu- 
lations. Even though a fit linear in ma removes 
only part of the O ( d )  corrections, we choose it 
as our preferred value (marked with an asterisk) 
as it is less sensitive to the m values used in the 
fit. To show the size of this effect, we give both 
estimates in Table 1. One exception is &p - &A at 
/3 = 6.0 for which the constant fit is our preferred 
estimate as the data do not show a linear term. 

The third new feature is the demonstration 
that consistent estimates for C A  are obtained from 
correlators with zero and non-zero momentum 
once additional O(p2a2) errors are accounted for. 
Data at /3 = 6.4 is shown in Fig. 2 where we plot 
C A  versus ( 1 2 p ~ / n ) ~ .  We find that a linear ex- 
trapolation to  p = 0 yields results consistent with 
those obtained using zero momentum correlators. 

Our estimates for Z:, Z t ,  C A ,  cv,  and bv 

I = 6.2 
ALPHA 
1.614 

f0.7922(4) (9: 
f0.807(8)(2) 

N.A. 
-0.038(4) 

- 0.21 (7) 

N.A. 

N.A. 
-I- 1.41 (2) 
N.A. 
N.A. 
N.A. 
N.A. 

N.A. 
N.A. 
N.A. 
N.A. 

P. Th. 
1.481 

f0.821 

f0.839 

f0.959 

-0.012 

-0.026 

fO.019 

- 
f1.099 

f1.255 

-0.002 

-0.002 

-0.062 

fO.OO1 

f1.097 

f1.252 

f1.099 

f1.161 

LANL 
1.526 

t0.802(1) 

t0.827(1)(4) 

+0.822(1)(4) 
+0.901(2) ( 5 )  

-0.029(2)(4) 

-0.08(1)(2) 
-0.032(3) 

+0.041(3) (23) 

+0.051(4) 

t1.24(1)(1) 
t l .39(1)  

-0.09(1)(1) 

-0.090(10)(1: 

-0.08(1)(1) 

-0.12( 2) (5) 

-0.02(4) 

t1.16(2)(3) 

t l .31(2)  (1) 

t1.04(3)(7) 
t 1.13(3) (8) 

ALPHA 
1.526 

f0.8032(6)(12 

f0.827(8) (1) 

N.A. 
-0.025(2) 

-0.13( 5 )  

N.A. 

N.A. 
f1.36(3) 

N.A. 
N.A. 
N.A. 
N.A. 

N.A. 
N.A. 
N.A. 
N.A. 

can be compared against those obtained by the 
ALPHA collaboration who used the Schrodinger 
functional method. Estimates for bv are already 
consistent within respective errors at all three ,8 
values. For the other four quantities we expect 
the difference ( L A N L p T e f e T T e d -  ALPHA) to  van- 
ish as O(a2)  for 2; and Z b ,  and as O(a)  for C A  
and cv.  Fits assuming this leading behavior and 
requiring that the difference vanish at a = 0, give 

AZ; = +(33~)’ - ( 4 7 5 ~ ) ~  (1) 
AZ; = -(246a)’ + ( 6 2 9 ~ ) ~  (2) 
ACA = - ( M a )  + (763~)’  (3) 
ACV = - (367~)  + (669~)’  (4) 

where a is in units of ( M e V 1 ) .  Prior to  interpre- 
tation, a number of comments are in order 

0 The differences in 2; are significant, how- 
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+2.68(19) 
+2.12(31) 

+2.40 (13) 
+2.27(20) 
+3.00(37) 
+2.45(46) 
-0.33(29) 

+2.60(38) 

-0.65(57) 

+2.72(33) 

Table 2 
Results for off-shell mixing coefficients. 

2.62(8) 
2.43(14) 

2.40 (7) 
2.42(9) 
1.72(16) 
1.53( 20) 
0.91(12) 

1.51(15) 

1.82(24) 

1.49(14) 

0 1 2 3 4 
Figure 2. Evidence for additional O(p’a’) errors 
in CA extracted from p # 0 correlators. 

ever the fit shows reasonable estimates for 
the higher order corrections. 

0 The differences in 2; are at most one com- 
bined u. 

ck + c’p 
2c’p 

ck + cb 
cb + c’p 

c; 
ck 
c’p 
ck 
c$ 

0 The coefficients in the fit for ACA are dom- 
inated by the significant difference at p = 
6.0. It is, t,herefore, important to resolve 
whether CA develops the large p dependence 
seen by the ALPHA Collaboration below 
p = 6.4. 

0 The errors in the ALPHA collaboration es- 
timates of cv are a significant fraction of 
the differelice. 

These fits, based on data at three p values with 
1/a between 2.1 and 3.86 GeV, should be consid- 
ered indicative and qualitative and certainly not 
sufficient to  draw precise conclusions. To stress 
this fact we do not give any error estimates for 
the fit parameters. 

Using our three data points we can also fit the 
difference between the non-perturbative and tad- 
pole improved 1-loop estimates as a function of 
the leading residual discretization error in a and 
perturbative corrections, O(a,),  giving 

A.2: = - ( X 5 8 ~ ) ~  - ( L.4as)2 (5) 

2.43(24) 
0.88(97) 
2.44( 13) 
2.40(18) 
2.38(50) 
1.99(56) 
0.44(49) 
2.00(48) 
1.96(49) 

cb  ”f””- + c‘p 2.82(15) 

” 
6.0(b) I 6.2 I 6.4 

2.44 (4) 
2.27 (6) 
1.85 (8) 
2.27( 4) 
2.28(5) 
1.52 (4) 
1.35 (6) 
0.93(4) 
1.35(4: 
1.36(4: 

A$ (197~)’ - ( 1 . 4 ~ ~ ~ ) ~  (6) 
(7) 

ACA = -(13a) - ( 1 . 3 ~ ~ ~ ) ~  (8) 
ACV = -(51a) - ( 1 . 7 ~ ~ ) ’  (9) 
ACT = (94a) + ( 0 . 8 ~ ~ ) ~  (10) 
A& = (1010~) - ( 2 . 9 ~ ~ ~ ) ’  (11) 
Abv = ( 4 2 9 ~ ~ )  + (1.50!,)’ (12) 

AZ$/Z$ = - ( 5 0 2 ~ ) ~  - (1 .8~~8)  2 

where a is expressed in M e V 1 ,  uo is 
( p l a q ~ e t t e ) l / ~ ,  and as = g2/(47ru$) is the tadpole 
improved coupling with values 0.1340,0.1255 and 
0.1183 at  the three p. The errors in the other 6 
are too large to  allow any meaningful fits. 

The discretization error for Aiv  is unexpect- 
edly large; those for Abv and AZ$/Z; about 
2 h ~ c ~  a; and reasonable for the rest including 
the fact that the perturbative corrections are 
52a,. Precise data at other p are required to 
clarify the scaling behavior of these constants. 

Finally, in Table 2 we present results for the 
coefficients of the equation of motion operators. 
Estimates at p = 6.0 are poor, but become rea- 
sonably precise at p = 6.2 and 6.4. We find that 
except for c‘p, the corrections to  the tree level 
value cb = 1 are large. 
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